Uniform bounds for expressions involving modified Bessel functions
نویسندگان
چکیده
منابع مشابه
Uniform Bounds for Bessel Functions
For ν > −1/2 and x real we shall establish explicit bounds for the Bessel function Jν(x) which are uniform in x and ν. This work and the recent result of L. J. Landau [7] provide relatively sharp inequalities for all real x.
متن کاملInequalities for Integrals of Modified Bessel Functions and Expressions Involving Them
Simple inequalities are established for some integrals involving the modified Bessel functions of the first and second kind. In most cases, we show that we obtain the best possible constant or that our bounds are tight in certain limits. We apply these inequalities to obtain uniform bounds for several expressions involving integrals of modified Bessel functions. Such expressions occur in Stein’...
متن کاملSome Integrals Involving Bessel Functions Some Integrals Involving Bessel Functions
A number of new definite integrals involving Bessel functions are presented. These have been derived by finding new integral representations for the product of two Bessel functions of different order and argument in terms of the generalized hypergeometric function with subsequent reduction to special cases. Connection is made with Weber's second exponential integral and Laplace transforms of pr...
متن کاملInequalities Involving Generalized Bessel Functions
Let up denote the normalized, generalized Bessel function of order p which depends on two parameters b and c and let λp(x) = up(x), x ≥ 0. It is proven that under some conditions imposed on p, b, and c the Askey inequality holds true for the function λp , i.e., that λp(x) +λp(y) ≤ 1 +λp(z), where x, y ≥ 0 and z = x + y. The lower and upper bounds for the function λp are also established.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 2016
ISSN: 1331-4343
DOI: 10.7153/mia-19-74